论文标题

神经网络中物理系统的操作有意义的表示

Operationally meaningful representations of physical systems in neural networks

论文作者

Nautrup, Hendrik Poulsen, Metger, Tony, Iten, Raban, Jerbi, Sofiene, Trenkwalder, Lea M., Wilming, Henrik, Briegel, Hans J., Renner, Renato

论文摘要

为了在科学方面取得进展,我们经常构建物理系统的抽象表示,以有意义地编码有关系统的信息。大多数当前机器学习技术所学的表示反映了培训数据中存在的统计结构;但是,这些方法不允许我们在表示形式上指定明确和操作有意义的要求。在这里,我们基于以下概念提出了一个神经网络架构,即处理物理系统不同方面的代理应该能够彼此之间尽可能有效地传达相关信息。这会产生将不同参数分开的表示,这些参数可用于在不同的实验设置中对物理系统进行陈述。我们提出涉及古典物理和量子物理学的例子。例如,我们的体系结构找到了一个任意的双Quity系统的紧凑表示,该系统将局部参数与描述量子相关性的参数分开。我们进一步表明,该方法可以与强化学习结合使用,以在代理需要探索实验设置以识别相关变量的情况下使表示形式学习。

To make progress in science, we often build abstract representations of physical systems that meaningfully encode information about the systems. The representations learnt by most current machine learning techniques reflect statistical structure present in the training data; however, these methods do not allow us to specify explicit and operationally meaningful requirements on the representation. Here, we present a neural network architecture based on the notion that agents dealing with different aspects of a physical system should be able to communicate relevant information as efficiently as possible to one another. This produces representations that separate different parameters which are useful for making statements about the physical system in different experimental settings. We present examples involving both classical and quantum physics. For instance, our architecture finds a compact representation of an arbitrary two-qubit system that separates local parameters from parameters describing quantum correlations. We further show that this method can be combined with reinforcement learning to enable representation learning within interactive scenarios where agents need to explore experimental settings to identify relevant variables.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源