论文标题
具有深度转移学习的大规模高分辨率SAR图像的分类
Classification of Large-Scale High-Resolution SAR Images with Deep Transfer Learning
论文作者
论文摘要
卫星获得的大规模高分辨率SAR覆盖图像的分类是一项具有挑战性的任务,面临着几个困难,例如具有专业知识的语义注释,由于变化的成像参数或区域目标区域差异而改变的数据特征,并且复杂的散射机制与光学成像不同。鉴于从Terrasar-X图像中收集的大规模SAR土地覆盖数据集,其中150个类别的层次三级注释,包括100,000多个补丁,因此解决了自动解释高度不平衡类别的SAR图像,地理多样性和标签噪声的三个主要挑战。在这封信中,基于类似注释的光学覆盖数据集(NWPU-RESISC45)提出了一种深层转移学习方法。此外,引入了带有成本敏感参数的TOP-2平滑损耗功能,以解决标签噪声和不平衡类的问题。提出的方法显示出从类似注释的遥感数据集中传输信息的效率很高,在高度不平衡的类中的性能强大,并且正在减轻标签噪声引起的过度拟合问题。更重要的是,学到的深层模型对其他特定于SAR的任务具有良好的概括,例如MSTAR目标识别,最新的分类精度为99.46%。
The classification of large-scale high-resolution SAR land cover images acquired by satellites is a challenging task, facing several difficulties such as semantic annotation with expertise, changing data characteristics due to varying imaging parameters or regional target area differences, and complex scattering mechanisms being different from optical imaging. Given a large-scale SAR land cover dataset collected from TerraSAR-X images with a hierarchical three-level annotation of 150 categories and comprising more than 100,000 patches, three main challenges in automatically interpreting SAR images of highly imbalanced classes, geographic diversity, and label noise are addressed. In this letter, a deep transfer learning method is proposed based on a similarly annotated optical land cover dataset (NWPU-RESISC45). Besides, a top-2 smooth loss function with cost-sensitive parameters was introduced to tackle the label noise and imbalanced classes' problems. The proposed method shows high efficiency in transferring information from a similarly annotated remote sensing dataset, a robust performance on highly imbalanced classes, and is alleviating the over-fitting problem caused by label noise. What's more, the learned deep model has a good generalization for other SAR-specific tasks, such as MSTAR target recognition with a state-of-the-art classification accuracy of 99.46%.