论文标题

用简单的小工具以及对电路和证明复杂性的应用

Lifting with Simple Gadgets and Applications to Circuit and Proof Complexity

论文作者

de Rezende, Susanna F., Meir, Or, Nordström, Jakob, Pitassi, Toniann, Robere, Robert, Vinyals, Marc

论文摘要

我们可以显着加强和推广定理的提升无效的nullstellensatz度,以通过Pitassi and Robere(2018)的形式跨度跨度计划的规模,以便它适用于任何足够高的小工具,尤其是有用的小工具,例如平等和超过人。我们将广义定理应用于解决两个开放问题: *我们提出了第一个结果,该结果证明了与无限界和多个边界系数切割平面的证明功率分离。具体而言,我们展示的CNF公式可以在具有无限系数的切割平面中以二次长度和恒定线空间进行驳斥,但是如果系数限制为多项元素的大小,则无限制的长度和次指定长度的驳斥。 *我们给出单调布尔公式和单调真实公式之间的第一个明确分离。具体而言,我们提供了一个明确的功能系列,可以使用几乎线性大小的单调真实公式计算,但需要单调的布尔公式为指数尺寸。以前仅知道非明显的分离。 可能具有独立感兴趣的重要技术成分是,我们表明,无效的卵形公式在dag g上拒绝卵石公式在任何领域上都与G的可逆卵石价格完全吻合。

We significantly strengthen and generalize the theorem lifting Nullstellensatz degree to monotone span program size by Pitassi and Robere (2018) so that it works for any gadget with high enough rank, in particular, for useful gadgets such as equality and greater-than. We apply our generalized theorem to solve two open problems: * We present the first result that demonstrates a separation in proof power for cutting planes with unbounded versus polynomially bounded coefficients. Specifically, we exhibit CNF formulas that can be refuted in quadratic length and constant line space in cutting planes with unbounded coefficients, but for which there are no refutations in subexponential length and subpolynomial line space if coefficients are restricted to be of polynomial magnitude. * We give the first explicit separation between monotone Boolean formulas and monotone real formulas. Specifically, we give an explicit family of functions that can be computed with monotone real formulas of nearly linear size but require monotone Boolean formulas of exponential size. Previously only a non-explicit separation was known. An important technical ingredient, which may be of independent interest, is that we show that the Nullstellensatz degree of refuting the pebbling formula over a DAG G over any field coincides exactly with the reversible pebbling price of G. In particular, this implies that the standard decision tree complexity and the parity decision tree complexity of the corresponding falsified clause search problem are equal.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源