论文标题

基于Raychaudhuri的各向异性爱因斯坦 - 马克斯韦方程的重建1+3 $ f(r)$ - 重力的协变形式主义

Raychaudhuri-based reconstruction of anisotropic Einstein-Maxwell equation in 1+3 covariant formalism of $f(R)$-gravity

论文作者

Tajahmad, Behzad

论文摘要

最近,Choudhury等人提出了基于Raychaudhuri方程的$ F(R)$重力模型的重建的新策略。在本文中,利用这种方法,在$ 1+3 $的$ f(r)$的$ 1+3 $的形式主义中重建了$ f(r)$ - 重力以四种模式进行了研究:$i。$ $ $ i。$重建,是由负恒定的恒定减速参数对越来越多的启示范围进行反复的重建。 $ ii。$重建来自常数的混蛋参数$ j = 1 $,恢复庆祝的$λ\ text {cdm} $进化模式; $ iii。$重建来自可变混蛋参数$ j = q(t)$;和$ iv。$ $重建来自缓慢变化的混蛋参数。此外,提出了两个增强该方法的建议。

Recently, a new strategy to the reconstruction of $f(R)$-gravity models based on the Raychaudhuri equation has been suggested by Choudhury et al. In this paper, utilizing this method, the reconstruction of anisotropic Einstein-Maxwell equation in the $1+3$ covariant formalism of $f(R)$-gravity is investigated in four modes: $i.$ Reconstruction from a negative constant deceleration parameter refereeing to an ever-accelerating universe; $ii.$ Reconstruction from a constant jerk parameter $j=1$ which recovers celebrated $Λ\text{CDM}$ mode of evolution; $iii.$ Reconstruction from a variable jerk parameter $j=Q(t)$; and $iv.$ Reconstruction from a slowly varying jerk parameter. Furthermore, two suggestions for enhancing the method are proposed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源