论文标题

重力波检测和参数估计,用于吸收黑孔二进制文件及其电磁对应物

Gravitational-wave detection and parameter estimation for accreting black-hole binaries and their electromagnetic counterpart

论文作者

Caputo, Andrea, Sberna, Laura, Toubiana, Alexandre, Babak, Stanislav, Barausse, Enrico, Marsat, Sylvain, Pani, Paolo

论文摘要

我们研究了气体积聚对计划的激光干涉仪空间天线(LISA)的巨大分离的黑洞二进制轨道进化的影响。我们专注于两个来源:(i)〜恒星 - 原始黑洞二进制二进制(SOBHBS),可以在数周/几个月内从丽莎带迁移到地面的重力波观测器; (ii)仅在丽莎带中的中间质量黑孔二进制〜(IMBHB)。由于可观察到的重力波周期大量,因此需要对这些系统的相位演变进行建模以极高的准确性,以避免偏向源参数的估计。积聚会影响纽顿后秩序的负($ -4 $)的重力波阶段,因此在大分离的二进制中占主导地位。如果在Eddington或以超级 - 埃德丁顿的速度发生增生,它将留下有关SobHBS动态的可检测到的烙印。在乐观的天体物理场景中,使用LISA和地面干涉仪的多波长策略可以检测约$ 10 $(几个)SOBHB事件,该事件可以以$ 50 \%$ $($ 10 \%$)的水平来衡量增生率。在所有情况下,可以在$ 0.4 \,{\ rm deg}^2 $不确定性的情况下识别天空位置。同样,可以在IMBHB中测量到$ \ gtrsim 10 \%$($ \ gtrsim 100 \%$)的增值,直到imbhbs至redshift $ z \约0.1 $($ z \ of 0.5 $),这些来源的位置可以在小于0.01 \ $ 0.01 \ $ $ deg}之内识别。总体而言,检测SOBHB或IMBHB将允许在具有未来X射线探测器(例如Athena)和无线电观测值(例如SKA)的气体环境中对电磁对应物的目标搜索。

We study the impact of gas accretion on the orbital evolution of black-hole binaries initially at large separation in the band of the planned Laser Interferometer Space Antenna (LISA). We focus on two sources: (i)~stellar-origin black-hole binaries~(SOBHBs) that can migrate from the LISA band to the band of ground-based gravitational-wave observatories within weeks/months; and (ii) intermediate-mass black-hole binaries~(IMBHBs) in the LISA band only. Because of the large number of observable gravitational-wave cycles, the phase evolution of these systems needs to be modeled to great accuracy to avoid biasing the estimation of the source parameters. Accretion affects the gravitational-wave phase at negative ($-4$) post-Newtonian order, and is therefore dominant for binaries at large separations. If accretion takes place at the Eddington or at super-Eddington rate, it will leave a detectable imprint on the dynamics of SOBHBs. In optimistic astrophysical scenarios, a multiwavelength strategy with LISA and a ground-based interferometer can detect about $10$ (a few) SOBHB events for which the accretion rate can be measured at $50\%$ ($10\%$) level. In all cases the sky position can be identified within much less than $0.4\,{\rm deg}^2$ uncertainty. Likewise, accretion at $\gtrsim 10\%$ ($\gtrsim 100\%$) of the Eddington rate can be measured in IMBHBs up to redshift $z\approx 0.1$ ($z\approx 0.5$), and the position of these sources can be identified within less than $0.01\,{\rm deg}^2$ uncertainty. Altogether, a detection of SOBHBs or IMBHBs would allow for targeted searches of electromagnetic counterparts to black-hole mergers in gas-rich environments with future X-ray detectors (such as Athena) and radio observatories (such as SKA).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源