论文标题
自称群体的代表性矩阵同源性
Representations of automorphism groups on the homology of matroids
论文作者
论文摘要
鉴于$ g $ $ g $的矩阵$ m $ $ g $,我们描述了$ g $的代表,这是双矩形$ m^*$的独立综合体同源性的。这些表示与$ M $的平底鞋的晶格的同源性有关,并且(当$ m $可实现时)与超平面布置的顶级共同体学有关。最后,我们详细分析了完整图的情况,该图具有对代数几何形状的应用。
Given a group $G$ of automorphisms of a matroid $M$, we describe the representations of $G$ on the homology of the independence complex of the dual matroid $M^*$. These representations are related with the homology of the lattice of flats of $M$, and (when $M$ is realizable) with the top cohomology of a hyperplane arrangement. Finally we analyze in detail the case of the complete graph, which has applications to algebraic geometry.