论文标题

CFT中连接的相关函数的对数行为

Logarithmic behaviour of connected correlation function in CFT

论文作者

Long, Jiang

论文摘要

我们研究了OPE块相对于一个空间区域的$(M)$ - 类型连接的相关函数。我们发现这些相关函数的对数差异。我们从三种不同的方法中证明对数行为是合理的:无质量的自由标量理论,塞尔伯格积分和保形块。截止独立系数是从共形块的分析延续获得的。在连接的相关函数中发现了UV/IR关系。我们可以使用变形的降低密度矩阵为子系统提供形式的``热力学的第一定律''。还简要讨论了较高维度的相关相关函数的区域定律。

We study $(m)$-type connected correlation functions of OPE blocks with respect to one spatial region in two dimensional conformal field theory. We find logarithmic divergence for these correlation functions. We justify the logarithmic behaviour from three different approaches: massless free scalar theory, Selberg integral and conformal block. Cutoff independent coefficients are obtained from analytic continuation of conformal blocks. A UV/IR relation has been found in connected correlation functions. We could derive a formal ``first law of thermodynamics'' for a subsystem using deformed reduced density matrix. Area law of connected correlation function in higher dimensions is also discussed briefly.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源