论文标题

基于爆发的感知的基于NBO2的回忆神经元

NbO2-based memristive neurons for burst-based perceptron

论文作者

Bo, Yeheng, Zhang, Peng, Luo, Ziqing, Li, Shuai, Song, Juan, Liu, Xinjun

论文摘要

使用基于峰值学习的神经形态计算在降低计算能力方面具有广泛的前景。由两个局部活性的候选人组成的回忆神经元已被用来模仿生物神经元的动力学行为。在这项工作中,全面研究了基于NBO2的回忆神经元的动态工作条件及其在尖峰和爆发之间的转化边界。此外,分析了爆裂的潜在机制,并证明了每个爆发期间的尖峰数量的可控性。最后,提出了通过使用每个爆发期间的尖峰来编码信息的模式分类和信息传输。结果表明,在尖峰神经网络中,神经主的实际实施是一种有希望的方法。

Neuromorphic computing using spike-based learning has broad prospects in reducing computing power. Memristive neurons composed with two locally active memristors have been used to mimic the dynamical behaviors of biological neurons. In this work, the dynamic operating conditions of NbO2-based memristive neurons and their transformation boundaries between the spiking and the bursting are comprehensively investigated. Furthermore, the underlying mechanism of bursting is analyzed and the controllability of the number of spikes during each burst period is demonstrated. Finally, pattern classification and information transmitting in a perceptron neural network by using the number of spikes per bursting period to encode information is proposed. The results show a promising approach for the practical implementation of neuristor in spiking neural networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源