论文标题
在$χ^{(2)} $光学微孔子中,行走受控的自启动频率梳子
Walk-off controlled self-starting frequency combs in $χ^{(2)}$ optical microresonators
论文作者
论文摘要
如今,对$χ^{(3)}中频率梳子的调查正在迅速发展。转换为$χ^{(2)} $谐振器有望进一步进步并带来新的挑战。在这里,梳子的产生不仅需要第一和第二谐波(FHS和SHS)和两个分散系数,而且还需要在组速度上存在实质性差异 - 空间散步。我们预测行走受控的高度稳定的梳子生成,与$χ^{(3)} $ case中已知的梳子截然不同。这包括抗碘状态的一般概念,相干抗碘的稳态(孤子)的形成,其中FH和SH信封在没有形状变化的情况下以常见的速度移动,对抗颗粒状稳态的表征以及梳子谱对泵谱和组速度差异的依赖。
Investigations of frequency combs in $χ^{(3)}$ optical microresonators are burgeoning nowadays. Changeover to $χ^{(2)}$ resonators promises further advances and brings new challenges. Here, the comb generation entails not only coupled first and second harmonics (FHs and SHs) and two dispersion coefficients, but also a substantial difference in the group velocities - the spatial walk-off. We predict walk-off controlled highly stable comb generation, drastically different from that known in the $χ^{(3)}$ case. This includes the general notion of antiperiodic state, formation of coherent antiperiodic steady states (solitons), where the FH and SH envelopes move with a common velocity without shape changes, characterization of the family of antiperiodic steady states, and the dependence of comb spectra on the pump power and the group velocity difference.