论文标题

在$χ^{(2)} $光学微孔子中,行走受控的自启动频率梳子

Walk-off controlled self-starting frequency combs in $χ^{(2)}$ optical microresonators

论文作者

Smirnov, Sergey, Sturman, Boris, Podivilov, Evgeny, Breunig, Ingo

论文摘要

如今,对$χ^{(3)}中频率梳子的调查正在迅速发展。转换为$χ^{(2)} $谐振器有望进一步进步并带来新的挑战。在这里,梳子的产生不仅需要第一和第二谐波(FHS和SHS)和两个分散系数,而且还需要在组速度上存在实质性差异 - 空间散步。我们预测行走受控的高度稳定的梳子生成,与$χ^{(3)} $ case中已知的梳子截然不同。这包括抗碘状态的一般概念,相干抗碘的稳态(孤子)的形成,其中FH和SH信封在没有形状变化的情况下以常见的速度移动,对抗颗粒状稳态的表征以及梳子谱对泵谱和组速度差异的依赖。

Investigations of frequency combs in $χ^{(3)}$ optical microresonators are burgeoning nowadays. Changeover to $χ^{(2)}$ resonators promises further advances and brings new challenges. Here, the comb generation entails not only coupled first and second harmonics (FHs and SHs) and two dispersion coefficients, but also a substantial difference in the group velocities - the spatial walk-off. We predict walk-off controlled highly stable comb generation, drastically different from that known in the $χ^{(3)}$ case. This includes the general notion of antiperiodic state, formation of coherent antiperiodic steady states (solitons), where the FH and SH envelopes move with a common velocity without shape changes, characterization of the family of antiperiodic steady states, and the dependence of comb spectra on the pump power and the group velocity difference.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源