论文标题
从原子分子动力学模拟和机器学习算法中测定聚酰亚胺的玻璃过渡温度
Determination of Glass Transition Temperature of Polyimides from Atomistic Molecular Dynamics Simulations and Machine-Learning Algorithms
论文作者
论文摘要
玻璃过渡温度($ t _ {\ text {g}} $)在控制聚合物的机械和热性能中起着重要作用。由于耐热性和机械强度优异,聚合物是聚合物的重要类别。因此,非常需要预测$ t _ {\ text {g}} $,因此非常需要加快具有目标属性和应用的新型聚酰亚胺聚合物的设计和发现。在这里,我们探索了三种不同的方法来计算$ t _ {\ text {g}} $通过全原子分子动力学(MD)仿真,或者通过使用机器 - 核心algorith的数学模型生成的数学模型来预测$ t _ {\ text {g}} $,该模型使用Machine-Learning Algorith来分析现有数据,该模型从文献中分析了现有数据。我们的模拟表明,可以通过检查聚酰亚胺中简单气体分子的扩散系数来确定$ t _ {\ text {g}} $作为温度的函数,并且结果与来自聚合物密度与温度的数据相当,并且实际上与可用的实验数据相当。此外,使用机器学习算法得出的$ t _ {\ text {g}} $的预测模型可用于估计$ t _ {\ text {g}} $在不确定性的不确定性中成功地在大约20度的不确定性中,即使是在聚元素尚未实验的实验中,
Glass transition temperature ($T_{\text{g}}$) plays an important role in controlling the mechanical and thermal properties of a polymer. Polyimides are an important category of polymers with wide applications because of their superior heat resistance and mechanical strength. The capability of predicting $T_{\text{g}}$ for a polyimide $a~priori$ is therefore highly desirable in order to expedite the design and discovery of new polyimide polymers with targeted properties and applications. Here we explore three different approaches to either compute $T_{\text{g}}$ for a polyimide via all-atom molecular dynamics (MD) simulations or predict $T_{\text{g}}$ via a mathematical model generated by using machine-learning algorithms to analyze existing data collected from literature. Our simulations reveal that $T_{\text{g}}$ can be determined from examining the diffusion coefficient of simple gas molecules in a polyimide as a function of temperature and the results are comparable to those derived from data on polymer density versus temperature and actually closer to the available experimental data. Furthermore, the predictive model of $T_{\text{g}}$ derived with machine-learning algorithms can be used to estimate $T_{\text{g}}$ successfully within an uncertainty of about 20 degrees, even for polyimides yet to be synthesized experimentally.