论文标题

可变形塑料的基于无模型的基于视力的塑造

Model-free vision-based shaping of deformable plastic materials

论文作者

Cherubini, Andrea, Ortenzi, Valerio, Cosgun, Akansel, Lee, Robert, Corke, Peter

论文摘要

我们解决了使用非划理动作来塑造可变形塑料材料的问题。塑造塑料物体很具有挑战性,因为它们难以建模并在视觉上跟踪。我们通过使用Kinetic Sand(一种塑料玩具材料)来研究此问题,该塑料玩具材料模仿了湿沙的物理特性。受到人类塑造动态沙的试验研究的启发,我们定义了两种类型的动作:\ textit {推动}材料从侧面和\ textit {tapping}从上方。使用基于图像的视觉伺服使用机器人臂执行所选的动作。从材料的当前和所需的视图中,我们根据视觉特征(例如外轮廓形状和像素亮度值)定义状态。这些被映射到动作,迭代重复以减少图像误差,直到达到收敛为止。为了推动,我们提出了三种将视觉状态映射到动作的方法。这些包括启发式方法和由人类行为训练的神经网络。我们表明,可以使用动力学砂获得简单的形状,而不明确对材料进行建模。我们可以实现的形状类型有限。需要采用更丰富的动作类型和多步推理,以实现更复杂的形状。

We address the problem of shaping deformable plastic materials using non-prehensile actions. Shaping plastic objects is challenging, since they are difficult to model and to track visually. We study this problem, by using kinetic sand, a plastic toy material which mimics the physical properties of wet sand. Inspired by a pilot study where humans shape kinetic sand, we define two types of actions: \textit{pushing} the material from the sides and \textit{tapping} from above. The chosen actions are executed with a robotic arm using image-based visual servoing. From the current and desired view of the material, we define states based on visual features such as the outer contour shape and the pixel luminosity values. These are mapped to actions, which are repeated iteratively to reduce the image error until convergence is reached. For pushing, we propose three methods for mapping the visual state to an action. These include heuristic methods and a neural network, trained from human actions. We show that it is possible to obtain simple shapes with the kinetic sand, without explicitly modeling the material. Our approach is limited in the types of shapes it can achieve. A richer set of action types and multi-step reasoning is needed to achieve more sophisticated shapes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源