论文标题
长期解决Kähler-Ricci流量的高阶估计值
Higher-Order Estimates of Long-Time Solutions to the Kähler-Ricci Flow
论文作者
论文摘要
在本文中,我们研究了带有半样本规范线束的紧凑型kähler歧管上Kähler-Ricci流的高定期性。我们证明了Hein-Tosatti在崩溃的卡拉比(Calabi-Yau)方面的抛物线类似物证明,当Iitaka纤维的通用纤维彼此之间是生物形态时,该流量从当地的流动从单数纤维上平稳地收敛到负Kähler-nighler-Inter-Inter-Iinstein Meterric oon Base castricold castricold castricold castorold castirold castirold。特别是,我们证明,当通用纤维彼此之间是生物形态时,流动的RICCI曲率均匀地限制在远离单数纤维的任何紧凑型子集上。
In this article, we study the higher-order regularity of the Kähler-Ricci flow on compact Kähler manifolds with semi-ample canonical line bundle. We proved, using a parabolic analogue of Hein-Tosatti's work on collapsing Calabi-Yau metrics, that when the generic fibers of the Iitaka fibration are biholomorphic to each other, the flow converges locally smoothly away from singular fibers to a negative Kähler-Einstein metric on the base manifold. In particular, we proved that the Ricci curvature of the flow is uniformly bounded on any compact subsets away from singular fibers when the generic fibers are biholomorphic to each other.