论文标题

从无线边缘的同龄人那里学习

Learning from Peers at the Wireless Edge

论文作者

Chakraborty, Shuvam, Mohammed, Hesham, Saha, Dola

论文摘要

最后一英里的连接主要由无线链路主导,其中异质节点具有有限且已经拥挤的电磁频谱。当前基于竞争的分散无线访问系统本质上是反应性的,可以减轻干扰。在本文中,我们建议使用神经网络以协作方式学习和预测频谱可用性,以便可以以高精度预测其可用性,以最大程度地提高无线访问并最大程度地减少同时链接之间的干扰。 Edge节点具有广泛的传感和计算功能,同时经常使用不同的操作员网络,他们可能不愿共享其模型。因此,我们向同行联合学习模型介绍了一个同行,在该模型中,局部模型是根据每个节点的感应结果进行训练的,并在其同行之间共享以创建全局模型。通过将边缘节点作为本地型号的聚合器授权并最大程度地降低模型传输的通信开销来取代基集中参数服务器的基本参数服务器的需要。我们生成无线通道访问数据,该数据用于训练本地模型。本地模型和全球模型的仿真结果在预测各种网络拓扑的渠道机会方面的准确性超过95%。

The last mile connection is dominated by wireless links where heterogeneous nodes share the limited and already crowded electromagnetic spectrum. Current contention based decentralized wireless access system is reactive in nature to mitigate the interference. In this paper, we propose to use neural networks to learn and predict spectrum availability in a collaborative manner such that its availability can be predicted with a high accuracy to maximize wireless access and minimize interference between simultaneous links. Edge nodes have a wide range of sensing and computation capabilities, while often using different operator networks, who might be reluctant to share their models. Hence, we introduce a peer to peer Federated Learning model, where a local model is trained based on the sensing results of each node and shared among its peers to create a global model. The need for a base station or access point to act as centralized parameter server is replaced by empowering the edge nodes as aggregators of the local models and minimizing the communication overhead for model transmission. We generate wireless channel access data, which is used to train the local models. Simulation results for both local and global models show over 95% accuracy in predicting channel opportunities in various network topology.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源