论文标题
diffnet ++:社会推荐的神经影响和兴趣扩散网络
DiffNet++: A Neural Influence and Interest Diffusion Network for Social Recommendation
论文作者
论文摘要
已经出现了社会建议,以利用用户之间的社交联系来预测用户未知的偏好,这可以减轻基于协作过滤的建议中的数据稀少问题。早期的方法依赖于利用每个用户的一阶社交邻居的兴趣来更好地建模,并且未能从全球社交网络结构中对社会影响力扩散过程进行建模。最近,我们提出了一个神经影响扩散网络(即diffnet)的初步工作,以供社会推荐(DIFFNET),该工作对递归社会扩散过程进行了建模,以捕获每个用户的高阶关系。但是,我们认为,随着用户在用户 - 用户社交网络和用户项目兴趣网络中都发挥着核心作用,仅对社交网络中的影响力扩散过程进行建模,就会忽略用户在用户项目网络中的潜在协作兴趣。在本文中,我们提出了Diffnet ++,这是一种改进的DIFFNET算法,该算法在统一框架中建模神经影响扩散和兴趣扩散。通过将社交建议作为一个具有社交网络和兴趣网络的异质图作为输入来重新加密,diffnet ++通过注入这两个网络信息,以同时嵌入用户嵌入学习。这是通过迭代从三个方面迭代汇总的嵌入来实现的:用户先前的嵌入,社交网络中社交邻居的影响聚合以及用户信息兴趣网络中项目邻居的兴趣汇总。此外,我们设计了一个多层次注意网络,该网络学习如何专注于这三个方面的用户嵌入。最后,对两个现实世界数据集的广泛实验结果清楚地表明了我们提出的模型的有效性。
Social recommendation has emerged to leverage social connections among users for predicting users' unknown preferences, which could alleviate the data sparsity issue in collaborative filtering based recommendation. Early approaches relied on utilizing each user's first-order social neighbors' interests for better user modeling and failed to model the social influence diffusion process from the global social network structure. Recently, we propose a preliminary work of a neural influence diffusion network (i.e., DiffNet) for social recommendation (Diffnet), which models the recursive social diffusion process to capture the higher-order relationships for each user. However, we argue that, as users play a central role in both user-user social network and user-item interest network, only modeling the influence diffusion process in the social network would neglect the users' latent collaborative interests in the user-item interest network. In this paper, we propose DiffNet++, an improved algorithm of DiffNet that models the neural influence diffusion and interest diffusion in a unified framework. By reformulating the social recommendation as a heterogeneous graph with social network and interest network as input, DiffNet++ advances DiffNet by injecting these two network information for user embedding learning at the same time. This is achieved by iteratively aggregating each user's embedding from three aspects: the user's previous embedding, the influence aggregation of social neighbors from the social network, and the interest aggregation of item neighbors from the user-item interest network. Furthermore, we design a multi-level attention network that learns how to attentively aggregate user embeddings from these three aspects. Finally, extensive experimental results on two real-world datasets clearly show the effectiveness of our proposed model.