论文标题
行为和神经数据分析的非线性回归模型
Non-linear regression models for behavioral and neural data analysis
论文作者
论文摘要
回归模型是经验科学中的流行工具,可以推断一组变量对实验数据集的因变量的影响。在神经科学和认知心理学中,包括线性回归,逻辑回归和Poisson GLM-的广义线性模型(GLMS)是研究推动参与者选择,反应时间和神经激活的因素的回归模型。但是,这些方法受到限制,因为它们仅捕获每个回归器的线性贡献。在这里,我们介绍了称为广义无限制模型(口香糖)的GLM的扩展,该扩展可以推断回归器对因变量的更丰富的贡献,包括回归器之间的可能相互作用。在口香糖中,每个回归器都通过线性或非线性函数传递,并且可以将不同结果转换的回归器的贡献求和或乘以为因变量生成预测变量。我们提出了对这些模型的贝叶斯处理,在该模型中,我们将使用高斯工艺先验赋予功能,并提出两种方法,以计算给定数据集的功能上的后验:拉普拉斯方法和稀疏变分方法,对于大型数据集而言,它可以更好地缩放。对于每种方法,我们评估模型估计的质量,并详细介绍如何拟合超参数(例如,定义函数的预期光滑度)。最后,我们在行为数据集上说明了该方法的功能,在该数据集中,受试者报告了一系列光栅的平均感知方向。该方法允许将光栅角度的映射恢复到每个受试者的感知证据,以及基于光栅的影响。总体而言,牙龈提供了一个非常丰富,灵活的框架,可在神经科学,心理学及其他地区进行非线性回归分析。
Regression models are popular tools in empirical sciences to infer the influence of a set of variables onto a dependent variable given an experimental dataset. In neuroscience and cognitive psychology, Generalized Linear Models (GLMs) -including linear regression, logistic regression, and Poisson GLM- is the regression model of choice to study the factors that drive participant's choices, reaction times and neural activations. These methods are however limited as they only capture linear contributions of each regressors. Here, we introduce an extension of GLMs called Generalized Unrestricted Models (GUMs), which allows to infer a much richer set of contributions of the regressors to the dependent variable, including possible interactions between the regressors. In a GUM, each regressor is passed through a linear or nonlinear function, and the contribution of the different resulting transformed regressors can be summed or multiplied to generate a predictor for the dependent variable. We propose a Bayesian treatment of these models in which we endow functions with Gaussian Process priors, and we present two methods to compute a posterior over the functions given a dataset: the Laplace method and a sparse variational approach, which scales better for large dataset. For each method, we assess the quality of the model estimation and we detail how the hyperparameters (defining for example the expected smoothness of the function) can be fitted. Finally, we illustrate the power of the method on a behavioral dataset where subjects reported the average perceived orientation of a series of gratings. The method allows to recover the mapping of the grating angle onto perceptual evidence for each subject, as well as the impact of the grating based on its position. Overall, GUMs provides a very rich and flexible framework to run nonlinear regression analysis in neuroscience, psychology, and beyond.