论文标题

点肥对del pezzo表面的影响

The effect of points fattening on del Pezzo surfaces

论文作者

Lampa-Baczyńska, Magdalena

论文摘要

在本文中,我们研究了del pezzo表面的副本上的积分效应$ \ mathbb {s} _r $,通过吹出$ \ mathbb {p}^2 $ at $ r $ points,带有$ r \ in \ in \ in \ in \ in \ r \ in \ r \ in \ r \ in \ dot {1,\ dots,8 \} $。在研究任意品种的积分问题时,基本问题是初始序列的最低生长以及这种最小生长发生的集合的几何表征。我们为Del Pezzo表面提供完整的答案。

In this paper, we study the fattening effect of points over the complex numbers for del Pezzo surfaces $\mathbb{S}_r$ arising by blowing-up of $\mathbb{P}^2$ at $r$ general points, with $ r \in \{1, \dots, 8 \}$. Basic questions when studying the problem of points fattening on an arbitrary variety are what is the minimal growth of the initial sequence and how are the sets on which this minimal growth happens characterized geometrically. We provide complete answer for del Pezzo surfaces.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源