论文标题

用隐藏的马尔可夫模型揭示生态状态动力学

Uncovering ecological state dynamics with hidden Markov models

论文作者

McClintock, Brett T., Langrock, Roland, Gimenez, Olivier, Cam, Emmanuelle, Borchers, David L., Glennie, Richard, Patterson, Toby A.

论文摘要

生态系统通常以与个人,人群,社区或整个生态系统有关的有限潜在状态的有限状态的变化来表征。由于经验现场研究的固有难度,在该层次结构的任意水平上运行的生态状态动态通常无法观察或“隐藏”。因此,生态学家必须经常与与这些基本过程有关的不完整或间接观察结果抗衡。通过基于简单但功能强大的数学特性的正式删除状态和观察过程,可用于描述许多生态现象,隐藏的马尔可夫模型(HMM)可以促进有关复杂系统状态动力学的推断,这些动力可能会棘手。但是,尽管HMM经常被应用于其他学科,但他们直到最近才开始在更广泛的生态社区中获得吸引力。我们为HMM提供温和的介绍,建立一些常见的术语,并回顾用于应用生态研究的HMM的巨大范围。我们还提供了有关HMM实施和解释的一些技术方面的补充教程。通过说明从业者如何使用简单的概念模板来自定义其特定感兴趣系统的HMM,揭示现有应用程序之间的方法论联系,并突出这些方法的一些实际考虑和局限性,我们的目标是帮助建立HMM作为生态学家的基本推论工具。

Ecological systems can often be characterised by changes among a finite set of underlying states pertaining to individuals, populations, communities, or entire ecosystems through time. Owing to the inherent difficulty of empirical field studies, ecological state dynamics operating at any level of this hierarchy can often be unobservable or "hidden". Ecologists must therefore often contend with incomplete or indirect observations that are somehow related to these underlying processes. By formally disentangling state and observation processes based on simple yet powerful mathematical properties that can be used to describe many ecological phenomena, hidden Markov models (HMMs) can facilitate inferences about complex system state dynamics that might otherwise be intractable. However, while HMMs are routinely applied in other disciplines, they have only recently begun to gain traction within the broader ecological community. We provide a gentle introduction to HMMs, establish some common terminology, and review the immense scope of HMMs for applied ecological research. We also provide a supplemental tutorial on some of the more technical aspects of HMM implementation and interpretation. By illustrating how practitioners can use a simple conceptual template to customise HMMs for their specific systems of interest, revealing methodological links between existing applications, and highlighting some practical considerations and limitations of these approaches, our goal is to help establish HMMs as a fundamental inferential tool for ecologists.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源