论文标题

知识图中的实体分析

Entity Profiling in Knowledge Graphs

论文作者

Zhang, Xiang, Yang, Qingqing, Ding, Jinru, Wang, Ziyue

论文摘要

知识图(kgs)是图形结构的知识库,可存储有关现实世界实体的事实信息。了解每个实体的独特性对于KGS的分析,共享和重复使用至关重要。传统的分析技术包括各种各样的方法,可以在各种应用中找到独特的特征,这可以帮助在人类对KGS的理解过程中区分实体。在这项工作中,我们提出了一种新颖的分析方法,以识别独特的实体特征。特征的独特性是通过一个模型仔细测量的,这是一种可扩展的表示模型,以产生多模式实体嵌入。我们全面评估了由真正的KGS产生的实体概况的质量。结果表明,我们的方法促进了人类对公斤实体的理解。

Knowledge Graphs (KGs) are graph-structured knowledge bases storing factual information about real-world entities. Understanding the uniqueness of each entity is crucial to the analyzing, sharing, and reusing of KGs. Traditional profiling technologies encompass a vast array of methods to find distinctive features in various applications, which can help to differentiate entities in the process of human understanding of KGs. In this work, we present a novel profiling approach to identify distinctive entity features. The distinctiveness of features is carefully measured by a HAS model, which is a scalable representation learning model to produce a multi-pattern entity embedding. We fully evaluate the quality of entity profiles generated from real KGs. The results show that our approach facilitates human understanding of entities in KGs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源