论文标题

语义分段中的上下文感知域的适应

Context-Aware Domain Adaptation in Semantic Segmentation

论文作者

Yang, Jinyu, An, Weizhi, Yan, Chaochao, Zhao, Peilin, Huang, Junzhou

论文摘要

在本文中,我们考虑了语义分割中无监督域适应的问题。该领域有两个主要问题,即如何以及如何在两个领域传输域知识。现有方法主要集中于通过对抗学习(如何转移)适应域不变特征(要转移的内容)。上下文依赖性对于语义细分至关重要,但是,其可传递性仍然尚未得到很好的理解。此外,如何在两个域中传输上下文信息仍然没有探索。在此激励的情况下,我们提出了一种基于自我注意力的跨注意机制,以捕获两个领域之间的上下文依赖性并适应可转移的上下文。为了实现这一目标,我们设计了两个跨域注意模块,以适应空间和频道视图的上下文依赖性。具体而言,空间注意模块捕获了源图像和目标图像中每个位置之间的局部特征依赖关系。通道注意模块模拟每对跨域通道图之间的语义依赖性。为了适应上下文依赖性,我们进一步选择性地从两个域中汇总了上下文信息。从经验上,我们的方法比现有的最先进方法的优越性在“ GTA5到CityScapes”和“ Synthia to CityScapes”上得到了证明。

In this paper, we consider the problem of unsupervised domain adaptation in the semantic segmentation. There are two primary issues in this field, i.e., what and how to transfer domain knowledge across two domains. Existing methods mainly focus on adapting domain-invariant features (what to transfer) through adversarial learning (how to transfer). Context dependency is essential for semantic segmentation, however, its transferability is still not well understood. Furthermore, how to transfer contextual information across two domains remains unexplored. Motivated by this, we propose a cross-attention mechanism based on self-attention to capture context dependencies between two domains and adapt transferable context. To achieve this goal, we design two cross-domain attention modules to adapt context dependencies from both spatial and channel views. Specifically, the spatial attention module captures local feature dependencies between each position in the source and target image. The channel attention module models semantic dependencies between each pair of cross-domain channel maps. To adapt context dependencies, we further selectively aggregate the context information from two domains. The superiority of our method over existing state-of-the-art methods is empirically proved on "GTA5 to Cityscapes" and "SYNTHIA to Cityscapes".

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源