论文标题
Pointins:基于点的实例细分
PointINS: Point-based Instance Segmentation
论文作者
论文摘要
在本文中,我们探讨了具有利益点(POI)功能的实例分段中的掩码表示形式。在单个POI功能中区分多个潜在实例是一项挑战,因为使用香草卷积为每个实例学习高维掩码功能需要沉重的计算负担。为了应对这一挑战,我们提出了实例感知的卷积。它将此蒙版表示任务分解为两个可拖动模块,作为实例感知权重和实例 - 敏捷功能。前者是参数化卷积,以产生与不同实例相对应的掩模特征,从而通过避免采用多种独立的卷积来提高掩模的学习效率。同时,后者在一个点中用作掩盖模板。通过将模板用动态权重卷来计算实例感知的掩模特征,用于掩码预测。与实例感知的卷积一起,我们提出了Pointins,这是一种简单且实例的细分方法,基于密集的一阶段探测器。通过广泛的实验,我们评估了基于视网膜和FCO的框架的有效性。 RESNET101中的Pointins骨干在可可数据集上达到38.3个掩码平均精度(MAP),从而超过了基于点的方法,较大的余量。它的性能与基于区域的面膜R-CNN具有可比的性能。
In this paper, we explore the mask representation in instance segmentation with Point-of-Interest (PoI) features. Differentiating multiple potential instances within a single PoI feature is challenging because learning a high-dimensional mask feature for each instance using vanilla convolution demands a heavy computing burden. To address this challenge, we propose an instance-aware convolution. It decomposes this mask representation learning task into two tractable modules as instance-aware weights and instance-agnostic features. The former is to parametrize convolution for producing mask features corresponding to different instances, improving mask learning efficiency by avoiding employing several independent convolutions. Meanwhile, the latter serves as mask templates in a single point. Together, instance-aware mask features are computed by convolving the template with dynamic weights, used for the mask prediction. Along with instance-aware convolution, we propose PointINS, a simple and practical instance segmentation approach, building upon dense one-stage detectors. Through extensive experiments, we evaluated the effectiveness of our framework built upon RetinaNet and FCOS. PointINS in ResNet101 backbone achieves a 38.3 mask mean average precision (mAP) on COCO dataset, outperforming existing point-based methods by a large margin. It gives a comparable performance to the region-based Mask R-CNN with faster inference.