论文标题

Josefson - 本地凸空间的Nissenzweig属性

The Josefson--Nissenzweig property for locally convex spaces

论文作者

Banakh, Taras, Gabriyelyan, Saak

论文摘要

如果身份映射映射$(e',σ(e',e))\ to(e',β^\ ast(e',e))$,我们不是连续持续的。根据经典的Josefson-Nissenzweig定理,每个无限的Banach空间都有JNP。给出了用JNP局部凸出空间的表征。我们在各种功能空间中彻底研究JNP。除其他结果外,我们还表明,对于Tychonoff空间$ x $,功能空间$ C_P(X)$具有JNP IFF,$^\ ast $ null-sequence $(μ_n)_ {n \inΩ} $的$ x $具有单位标准的$ x $。但是,对于每一个Tychonoff空间$ x $,$ x $上的baire-1 $ b_1(x)$都不是$ x $上的免费本地凸出空间$ l(x)$ ax $ x $的jnp。

We define a locally convex space $E$ to have the $Josefson$-$Nissenzweig$ $property$ (JNP) if the identity map $(E',σ(E',E))\to ( E',β^\ast(E',E))$ is not sequentially continuous. By the classical Josefson-Nissenzweig theorem, every infinite-dimensional Banach space has the JNP. A characterization of locally convex spaces with the JNP is given. We thoroughly study the JNP in various function spaces. Among other results we show that for a Tychonoff space $X$, the function space $C_p(X)$ has the JNP iff there is a weak$^\ast$ null-sequence $(μ_n)_{n\inω}$ of finitely supported sign-measures on $X$ with unit norm. However, for every Tychonoff space $X$, neither the space $B_1(X)$ of Baire-1 functions on $X$ nor the free locally convex space $L(X)$ over $X$ has the JNP.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源