论文标题

过度诠释揭示了图像分类模型病理

Overinterpretation reveals image classification model pathologies

论文作者

Carter, Brandon, Jain, Siddhartha, Mueller, Jonas, Gifford, David

论文摘要

图像分类器通常在其测试集精度上进行评分,但是高精度可以掩盖微妙的模型故障类型。我们发现,流行基准测试的高分卷积神经网络(CNN)表现出令人困扰的病理,即使没有语义上的显着特征,它们即使在没有语义上的特征的情况下也可以表现出很高的精度。当模型提供高信心的决策而没有显着支持输入功能时,我们说分类器已经过度解释了其输入,在对人类毫无意义的模式中发现了太多的类实验。在这里,我们证明了接受过CIFAR-10和Imagenet训练的神经网络遭受了过度诠释的困扰,并且即使95%的输入图像被掩盖了,并且人类无法辨别其余的像素 - 录像带中的明显特征,我们发现CIFAR-10上的模型也可以做出自信的预测。我们介绍了批处理的梯度SIS,这是一种用于发现足够的复杂数据集输入子集的新方法,并使用此方法来显示ImageNet中边框像素的充分性进行训练和测试。尽管这些模式将潜在模型的脆弱性预示在现实世界部署中,但实际上它们是基准的有效统计模式,仅足以达到高测试准确性。与对抗性示例不同,过度解释依赖于未修改的图像像素。我们发现结合和输入辍学都可以帮助减轻过度解释。

Image classifiers are typically scored on their test set accuracy, but high accuracy can mask a subtle type of model failure. We find that high scoring convolutional neural networks (CNNs) on popular benchmarks exhibit troubling pathologies that allow them to display high accuracy even in the absence of semantically salient features. When a model provides a high-confidence decision without salient supporting input features, we say the classifier has overinterpreted its input, finding too much class-evidence in patterns that appear nonsensical to humans. Here, we demonstrate that neural networks trained on CIFAR-10 and ImageNet suffer from overinterpretation, and we find models on CIFAR-10 make confident predictions even when 95% of input images are masked and humans cannot discern salient features in the remaining pixel-subsets. We introduce Batched Gradient SIS, a new method for discovering sufficient input subsets for complex datasets, and use this method to show the sufficiency of border pixels in ImageNet for training and testing. Although these patterns portend potential model fragility in real-world deployment, they are in fact valid statistical patterns of the benchmark that alone suffice to attain high test accuracy. Unlike adversarial examples, overinterpretation relies upon unmodified image pixels. We find ensembling and input dropout can each help mitigate overinterpretation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源