论文标题
2个均匀的多项式和最大子空间
2-Homogeneous Polynomials and Maximal Subspaces
论文作者
论文摘要
在本文中,我们研究了复杂和实际不可分离的Banach空间上连续N-均质多项式的最大子空间。在实际情况下,我们将证明,如果p是2个均匀的多项式,并且如果存在k维p-最大子空间,则每个p-Maximal子空间都是k维的。
In this paper we study the maximal subspaces of continuous n-homogeneous polynomials on complex and real non separable Banach spaces. In the real case we will prove that if P is a 2-homogeneous polynomial and if there exist a k-dimensional P-maximal subspace then every P-maximal subspace is k-dimensional.