论文标题
使用跨模式实体一致性的量度用于现实世界新闻的多模式分析
Multimodal Analytics for Real-world News using Measures of Cross-modal Entity Consistency
论文作者
论文摘要
万维网已成为收集信息和新闻的流行来源。多模式信息,例如,使用照片丰富文本,通常用于更有效地传达新闻或引起人们的注意。照片内容的范围从装饰性,描述其他重要信息,甚至可以包含误导性信息。因此,量化实体表示的跨模式一致性的自动方法可以支持人类评估者评估总体多模式信息,例如,关于偏见或情感。在某些情况下,这种措施可能会提示检测假新闻,这在当今社会中是一个越来越重要的话题。在本文中,我们在现实世界新闻中介绍了一项新颖的跨模式一致性验证的任务,并提出了一种多模式的方法来量化图像和文本之间的实体连贯性。命名实体链接应用于新闻文本中的提取人员,位置和事件。建议采用几种措施使用艺术方法来计算这些实体的跨模式相似性。与以前的工作相反,我们的系统会自动收集网络示例数据,并且适用于现实世界新闻。在两个涵盖不同语言,主题和域的新型数据集中的结果证明了我们方法的可行性。数据集和代码可公开用于促进这个新方向的研究。
The World Wide Web has become a popular source for gathering information and news. Multimodal information, e.g., enriching text with photos, is typically used to convey the news more effectively or to attract attention. Photo content can range from decorative, depict additional important information, or can even contain misleading information. Therefore, automatic approaches to quantify cross-modal consistency of entity representation can support human assessors to evaluate the overall multimodal message, for instance, with regard to bias or sentiment. In some cases such measures could give hints to detect fake news, which is an increasingly important topic in today's society. In this paper, we introduce a novel task of cross-modal consistency verification in real-world news and present a multimodal approach to quantify the entity coherence between image and text. Named entity linking is applied to extract persons, locations, and events from news texts. Several measures are suggested to calculate cross-modal similarity for these entities using state of the art approaches. In contrast to previous work, our system automatically gathers example data from the Web and is applicable to real-world news. Results on two novel datasets that cover different languages, topics, and domains demonstrate the feasibility of our approach. Datasets and code are publicly available to foster research towards this new direction.