论文标题
深层本地形状:学习本地SDF先验,以详细3D重建
Deep Local Shapes: Learning Local SDF Priors for Detailed 3D Reconstruction
论文作者
论文摘要
在大规模上有效地重建复杂和复杂的表面是机器知觉的长期目标。为了解决这个问题,我们引入了深层的本地形状(DEEPLS),这是一个深层表示,可以编码和重建高质量的3D形状,而无需过不出的内存要求。 DeepLs用传统的表面重建系统中使用的密集体积签名距离函数(SDF)表示,其由神经网络定义的一组本地学习的连续SDF,灵感来自最新工作,例如DEEPSDF。与代表具有神经网络和单个潜在代码的对象级SDF的DeepSDF不同,我们存储了一个独立的潜在代码网格,每个网格都负责在当地小社区中存储有关表面的信息。将场景分解为本地形状的分解简化了网络必须学习的先前分布,还可以实现有效的推理。我们通过显示完整场景的对象形状编码和重建,在其中Deepls提供高压,准确性和局部形状完成,从而证明了DEEPL的有效性和概括能力。
Efficiently reconstructing complex and intricate surfaces at scale is a long-standing goal in machine perception. To address this problem we introduce Deep Local Shapes (DeepLS), a deep shape representation that enables encoding and reconstruction of high-quality 3D shapes without prohibitive memory requirements. DeepLS replaces the dense volumetric signed distance function (SDF) representation used in traditional surface reconstruction systems with a set of locally learned continuous SDFs defined by a neural network, inspired by recent work such as DeepSDF. Unlike DeepSDF, which represents an object-level SDF with a neural network and a single latent code, we store a grid of independent latent codes, each responsible for storing information about surfaces in a small local neighborhood. This decomposition of scenes into local shapes simplifies the prior distribution that the network must learn, and also enables efficient inference. We demonstrate the effectiveness and generalization power of DeepLS by showing object shape encoding and reconstructions of full scenes, where DeepLS delivers high compression, accuracy, and local shape completion.