论文标题

在线投资算法的框架

A Framework for Online Investment Algorithms

论文作者

Paskaramoorthy, Andrew, van Zyl, Terence, Gebbie, Tim

论文摘要

通过离线运营商的孤岛将投资管理流程的人工分割为工作流程,可以限制孤岛集体和适应性地追求统一的最佳投资目标。为了实现投资者的目标,在线算法可以提供明确的增量方法,该方法在数据到达流程级别时可以进行顺序更新。这与离线(或批次)过程形成鲜明对比,后者着重于在过程级别集成之前做出组件级别的决策。在这里,我们介绍并报告了算法投资组合管理的集成和在线框架的结果。本文提供了一个可以嵌入过程级别学习框架中的工作流程。可以增强工作流程,以完善信号生成和资产级演变和定义。我们的结果证实,我们可以将我们的框架与重新采样方法结合使用,以优于幼稚的市值基准,同时清楚地表明过度拟合的范围。我们认为这样的在线更新框架是朝着开发智能投资组合选择算法的关键一步,该算法将财务理论,投资者的观点和数据分析与过程级别的学习相结合。

The artificial segmentation of an investment management process into a workflow with silos of offline human operators can restrict silos from collectively and adaptively pursuing a unified optimal investment goal. To meet the investor's objectives, an online algorithm can provide an explicit incremental approach that makes sequential updates as data arrives at the process level. This is in stark contrast to offline (or batch) processes that are focused on making component level decisions prior to process level integration. Here we present and report results for an integrated, and online framework for algorithmic portfolio management. This article provides a workflow that can in-turn be embedded into a process level learning framework. The workflow can be enhanced to refine signal generation and asset-class evolution and definitions. Our results confirm that we can use our framework in conjunction with resampling methods to outperform naive market capitalisation benchmarks while making clear the extent of back-test over-fitting. We consider such an online update framework to be a crucial step towards developing intelligent portfolio selection algorithms that integrate financial theory, investor views, and data analysis with process-level learning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源