论文标题
深层病变跟踪器:4D纵向成像研究中的监测病变
Deep Lesion Tracker: Monitoring Lesions in 4D Longitudinal Imaging Studies
论文作者
论文摘要
纵向研究中的监测治疗反应在临床实践中起着重要作用。准确识别跨串行成像随访的病变是监测过程的核心。通常,这同时包含图像和解剖因素。但是,手动匹配病变是劳动密集型且耗时的。在这项工作中,我们提出了深度病变跟踪器(DLT),这是一种使用外观和基于解剖学的信号的深度学习方法。为了结合解剖学约束,我们提出了一个解剖信号编码器,该信号编码器可防止病变与视觉上相似但虚假的区域相匹配。此外,我们为暹罗网络提供了一种新的配方,避免了3D互相关的重量计算负载。为了提供更多的图像,我们还提出了一种自我监督的学习(SSL)策略,以培训具有未配对图像的跟踪器,克服了数据收集的障碍。为了培训和评估我们的跟踪器,我们介绍并发布了第一个病变跟踪基准,由公共深层数据库的3891个病变对组成。提出的方法DLT定位平均误差距离为7 mm的病变中心。这比领先的注册算法好5%,而整个CT卷的运行速度快14倍。我们证明了对检测器或相似性学习替代方案的改进。 DLT还可以很好地概括在100个纵向研究的外部临床测试集上,达到88%的精度。最后,我们将DLT插入自动肿瘤监测工作流程中,在评估病变治疗反应时,它的准确度为85%,该反应仅比手动输入的准确性低0.46%。
Monitoring treatment response in longitudinal studies plays an important role in clinical practice. Accurately identifying lesions across serial imaging follow-up is the core to the monitoring procedure. Typically this incorporates both image and anatomical considerations. However, matching lesions manually is labor-intensive and time-consuming. In this work, we present deep lesion tracker (DLT), a deep learning approach that uses both appearance- and anatomical-based signals. To incorporate anatomical constraints, we propose an anatomical signal encoder, which prevents lesions being matched with visually similar but spurious regions. In addition, we present a new formulation for Siamese networks that avoids the heavy computational loads of 3D cross-correlation. To present our network with greater varieties of images, we also propose a self-supervised learning (SSL) strategy to train trackers with unpaired images, overcoming barriers to data collection. To train and evaluate our tracker, we introduce and release the first lesion tracking benchmark, consisting of 3891 lesion pairs from the public DeepLesion database. The proposed method, DLT, locates lesion centers with a mean error distance of 7 mm. This is 5% better than a leading registration algorithm while running 14 times faster on whole CT volumes. We demonstrate even greater improvements over detector or similarity-learning alternatives. DLT also generalizes well on an external clinical test set of 100 longitudinal studies, achieving 88% accuracy. Finally, we plug DLT into an automatic tumor monitoring workflow where it leads to an accuracy of 85% in assessing lesion treatment responses, which is only 0.46% lower than the accuracy of manual inputs.