论文标题
空间维度和循环倾斜对狄拉克带的纵向光电电导率的影响
Effects of spatial dimensionality and band tilting on the longitudinal optical conductivities in Dirac bands
论文作者
论文摘要
我们报告了基于线性响应的统一理论,用于分析带有倾斜狄拉克锥的材料的纵向光学电导率(LOC)。根据倾斜参数$ t $,狄拉克电子有四个阶段:直到I型,I型II和类型III;狄拉克分散体可以是各向同性的或各向异性的。材料的空间尺寸可以是一,二或三维的(1d,2d和3d)。 $ d $ dimension(带有$ d \ ge2 $)中的interband locs和intraband locs缩放为$σ_{0}ω^{d-2} $和$σ_{0}μ^{d-1}δ(d-1}δ(ω)$,其中$ω$是频率和$ $ $ $ ch频率和$ $ $ $ $ $。由于缺乏额外的空间尺寸,因此带的LOC在1D中消失。相比之下,2D和3D中的带LOC是非趋势的,并且具有许多相似的属性。带有带的通用固定点,带有$ω=2μ$,无论$ d = 2 $或$ d = 3 $,都可以通过费米表面和能量共振轮廓的几何结构来直观地理解。 2D和3D倾斜的狄拉克带的内映射和载体密度都与费米表面的几何结构和整合的截止密切相关。发现LOC的角度依赖性表征了空间维度和带倾斜性以及LOC的恒定渐近背景值反映狄拉克带的特征。各向异性倾斜的狄拉克锥中的LOC可以通过由2D和3D的费米速度组成的比例连接到其各向同性的锥体。大多数发现对于倾斜的狄拉克材料来说是普遍的,因此在物理兴趣的空间维度上有效的许多狄拉克材料有效。
We report a unified theory based on linear response, for analyzing the longitudinal optical conductivity (LOC) of materials with tilted Dirac cones. Depending on the tilt parameter $t$, the Dirac electrons have four phases: untilted, type-I, type-II, and type-III; the Dirac dispersion can be isotropic or anisotropic; the spatial dimension of the material can be one-, two-, or three-dimensions (1D, 2D and 3D). The interband LOCs and intraband LOCs in $d$ dimension (with $d\ge2$) are found to scale as $σ_{0}ω^{d-2}$ and $σ_{0}μ^{d-1}δ(ω)$, respectively, where $ω$ is the frequency and $μ$ the chemical potential. The interband LOC vanishes in 1D due to lack of extra spatial dimension. In contrast, the interband LOCs in 2D and 3D are nonvanishing and share many similar properties. A universal and robust fixed point of interband LOCs appears at $ω=2μ$ no matter $d=2$ or $d=3$, which can be intuitively understood by the geometric structures of Fermi surface and energy resonance contour. The intraband LOCs and the carrier density for 2D and 3D tilted Dirac bands are both closely related to the geometric structure of Fermi surface and the cutoff of integration. The angular dependence of LOCs is found to characterize both spatial dimensionality and band tilting and the constant asymptotic background values of LOC reflect features of Dirac bands. The LOCs in the anisotropic tilted Dirac cone can be connected to its isotropic counterpart by a ratio that consists of Fermi velocities for both 2D and 3D. Most of the findings are universal for tilted Dirac materials and hence valid for a great many Dirac materials in the spatial dimensions of physical interest.